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Abstract - We consider a boundary data identi�cation problem in quasi-static electromagnetism. Two
kinds of boundary conditions are simultaneously imposed on one part of the boundary. The other part
of the boundary is unreachable, i.e. the boundary condition is unknown and it has to be determined as a
part of the problem. We assume that the permeability outside the domain satis�es µ À µ0. Two di�erent
numerical approaches to solve this problem are presented, compared and their results are given.

1. INTRODUCTION
In many problems ranging from physics, mechanics, geology to medical sciences, one has to solve partial
di�erential equations, where some unknown coe�cients are involved. In these problems one tries to
recover these unknown coe�cients via boundary measurements of certain quantities. There are di�erent
ways how to do it, e.g., minimization methods, alternating methods etc.

We deal with an identi�cation problem of an unknown boundary data and the determination of a
solution inside of a domain from the measurements on a part of the boundary. The lack of information
on the unreachable part of the boundary has to be compensated by over-determined data on the reachable
part. We consider this problem particularly for a case of a quasi-static model in electromagnetism. This
model, also known as eddy-current model for Maxwell's equations, neglects the displacement currents. It
is feasible for low-frequency simulations as design of transformers. The justi�cation of this model can be
found, e.g., in [1]. The numerical solution of this model asks much less computational e�ort than that of
complete Maxwell's system.

We design two di�erent approaches to solve the problem described above. The �rst one is the so-called
�method of answers� (MOA). On the unreachable part of the boundary we invoke di�erent impulses and
we compute their �answers� on the reachable part. Due to the linearity of the problem, we search for a
linear combination of �answers� satisfying the over-determined data on the reachable part. This leads to
a linear system of algebraic equations for coe�cients. Such a system is generally ill-conditioned.

The second method called the �Adjoint Method� (AM) is based on an iterative approach, particularly
the steepest descent method. We construct a regularized functional and its gradient. We use the varia-
tional framework. We aim to work in natural Sobolev spaces on a polyhedra keeping the regularity of a
solution as low as possible.

Both approaches, mentioned above, require solution of direct problems. The discretization is done by
means of edge �nite elements, which are natural for magnetic �elds (see [2]).

2. NOTATIONS AND PROBLEM SETTING
Let Ω ⊂ R3 be a Lipschitz polyhedra with the boundary Γ and let n be the outward normal to Γ. We
consider a linear, isotropic, homogeneous medium. In this case Maxwell's equations can be written in
the following form :

µ∂tH + ∇∧E = 0
−ε∂tE + ∇∧H = σE

∇ ·E =
ρ

ε∇ ·H = 0





in Ω× (0, T ), (1)

where H and E denote the magnetic and electric �elds, µ, σ, ε, ρ are the permeability, conductivity,
permittivity and electric charge density, respectively. In low-frequency applications one can assume that
ε
σ ∂tE ¿ 1. This condition is called the quasi static condition for electric �eld. The elimination of E in
(1) leads to the following model for magnetic �eld :

∂tH + µ−1σ−1∇∧∇ ∧H = 0
∇ ·H = 0.

(2)
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From now on, we will call this system the quasi static model for magnetic �eld. When the time
discretization is applied, the following system at each time point of a suitable time partitioning has to be
solved :

H + α∇∧∇ ∧H = f
∇ ·H = 0

}
in Ω, for α ∈ R. (3)

To be accurate we have to solve :

Hn + ∆tµ−1σ−1∇∧∇ ∧Hn = Hn−1

∇ ·Hn = 0

}
in Ω, (4)

where ∆t is the time step and Hn is the solution in time t = n∆t.
If ∇ · f = 0, which will be our case, we can omit ∇ · H = 0 in (3). Note, that the assumption of

the homogeneity says that µ, σ are constants. If we did not assume that, we would have the following
problem instead of (2):

∂tH + µ−1∇∧ (σ−1∇∧H) = 0
∇ · (µH) = 0 (5)

Most of the results here can be generalized for (5). However, for simplicity we assume that µ, σ are given
constants. Two natural types of boundary conditions are frequently used in direct problems :

H ∧ n = ~H
or

∇∧H ∧ n = ~C.

(6)

The �rst one prescribes the tangential component of a magnetic �eld and the second one imposes the
information about the tangential component of an electric �eld.

We are going to work in a variational framework. We will use the following notation :

L2(Ω) := {u ∈ L2(Ω)3}
H(curl ,Ω) := {u ∈ L2(Ω) : curlu ∈ L2(Ω)}

L2
t (Γ) := {u ∈ L2(Γ) : u · n|Γ = 0}; < ·, · >t its scalar product.

In H(curl ,Ω) we take the norm ‖H‖H(curl ,Ω) = (‖H‖2L2(Ω) + ‖curlH‖2L2(Ω))
1/2.

We will apply the theory developed in [3,4], where the authors introduced the traces of weak solutions
of Maxwell's equations in Lipschitz polyhedra. A short summary of the necessary notations and results
of these two articles follows.

Let us set:
H1/2
− (Γ) := {u ∈ L2

t (Γ) : u|Γj
∈ H1/2(Γj), 1 ≤ j ≤ N},

where Γj are faces of a polyhedra.

De�nition 1. The �tangential components trace� mapping πτ : C∞(Ω) → H1/2
− (Γ) and the �tangential

trace� mapping γτ : C∞(Ω) → H1/2
− (Γ) are de�ned as u 7→ n ∧ (u ∧ n)|Γ and u 7→ u ∧ n|Γ, respectively.

These mappings can be extended by continuity to linear continuous mappings from H1(Ω) to H1/2
− (Γ),

and consequently they can be considered as mappings from H1/2(Γ) to H1/2
− (Γ).

Let Γ+ be an nonempty open connected subset of Γ with a piecewise smooth boundary ∂Γ and let
Γ− = Γ\Γ+ be an nonempty complement of Γ+. Let us set:

H1/2
00 (Γ+) := {ϕ ∈ H1/2(Γ+) : ϕ̃ ∈ H1/2(Γ)}

H−1/2
00 (Γ+) := (H1/2

00 (Γ+))
′

H0,Γ−(curl , Ω) := {u ∈ H(curl , Ω) : u ∧ n|Γ− = 0 in H
−1/2
00 (Γ)3},

where ϕ̃ is the prolongation by zero to the whole Γ. Now, we state Theorem 6.6 from [4].

Theorem 1. The mapping γ+
τ : H(curl , Ω) → H−1/2

‖,00 (divΓ+ , Γ+) (respectively its restriction γ+,0
τ :

H0,Γ−(curl , Ω) → H−1/2
‖ (div0

Γ+
,Γ+)) which associates to a vector �eld u ∈ H(curl ,Ω) (resp. to u ∈

H0,Γ−(curl , Ω)) its tangential components on Γ+, that is u ∧ n|Γ+ , is linear continuous and admits a
continuous inverse.
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Analogical theorem holds true also for πτ and of course also for the case of the whole boundary.
The exhaustive de�nitions of the spaces H−1/2

‖ (div0
Γ+

, Γ+) and H−1/2
‖,00 (divΓ+ , Γ+), which are the suitable

subspaces of H1/2
− (Γ) taking into account special boundary conditions, exceed the scope of this article.

They can be found in [3,4]. The reader should be aware of the fact, that according to Theorem 1, these
subspaces of H1/2

− (Γ) are such that the tangential trace mapping γ+
τ and its restriction γ+,0

τ are linear,
continuous and surjective. They are the equivalents of

H−1/2(divΓ, Γ) := {λ ∈ H−1/2(Γ)3 : λ · n = 0,divΓλ ∈ H−1/2(Γ)} = {u ∧ n : u ∈ H(curl , Ω)},
which is the trace space for H(curl ,Ω) when the domain Ω is regular. Here the di�erential operator divΓ

is de�ned by duality [6]:
〈divΓv, ξ〉 = 〈v,∇Γξ〉 ∀ ξ regular,

where ∇Γξ = πτ (∇ξ).

1>>
r
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1»
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m
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Figure 1: Domain Ω.

We assume that the relative permeability µr ≈ 1(= µ/µ0) in Ω and µr À 1
in R3\Ω̄. In this case we can set H ≈ 0 in R3\Ω̄. Such a simpli�cation
implies that we can consider a magnetic �eld to be living just inside the
domain and we can neglect what is happening outside.
We would like to solve a special boundary identi�cation problem for (3),
namely: We prescribe simultaneously both types of the boundary con-
ditions from (6) on a part of the boundary Γ+ ⊂ Γ (determined). The
problem is to identify the missing boundary data on Γ− ⊂ Γ (identify)
together with magnetic �eld H in Ω satisfying the following problem.

Problem 1. Find H ∈ H(curl ,Ω) in Ω such that

H + α∇∧∇ ∧H = f in Ω, for α ∈ R+

H ∧ n = ~H

∇∧H ∧ n = ~C

}
on Γ+,

(7)

where ~H, ~C are given boundary data and the given f is divergence free.

We have to enforce some necessary conditions on ~H and ~C. Suppose that (7) is uniquely solvable.
Then it can be shown that not only H but also ∇ ∧ H belong to H(curl , Ω). This together with
Theorem 1 implies that γ+

τ (H) ∈ H−1/2
‖,00 (divΓ+ , Γ+) and γ+

τ (∇ ∧ H) ∈ H−1/2
‖,00 (divΓ+ , Γ+). Thus we

have the necessary conditions that both ~H and ~C have to belong to H−1/2
‖,00 (divΓ+ , Γ+).

3. 1st APPROACH - METHOD OF ANSWERS
As before, the fact that ∇ ∧ H ∈ H(curl ,Ω) implies γ−τ (∇ ∧ H) ∈ H−1/2

‖,00 (divΓ− , Γ−). According
to the linear character of (7), we can apply the method of linear superposition. First, for any ω ∈
H−1/2
‖,00 (divΓ− , Γ−) we de�ne the following two auxiliary problems:

H1(ω) + α∇∧∇ ∧H1(ω) = 0 in Ω, α ∈ R+

∇∧H1(ω) ∧ n = 0 on Γ+

∇∧H1(ω) ∧ n = ω on Γ−,
(8)

and
H2 + α∇∧∇ ∧H2 = f in Ω, α ∈ R+

∇∧H2 ∧ n = ~C on Γ+

∇∧H2 ∧ n = 0 on Γ−.

(9)

Let's de�ne H(ω) := H1(ω) + H2. Note, that H(ω) satis�es the �rst and the third equation of (7).
Now, take the mapping T : H−1/2

‖,00 (divΓ− , Γ−) → H−1/2
‖,00 (divΓ+ , Γ+) such that

Tω = γ+
τ (H(ω)).

Because of the fact that T maps Neumann data to Dirichlet data, it is called Neumann-to-Dirichlet map.
We have to pick up such ω which satis�es:

Tω = ~H (10)
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in order to ful�ll the second equation of (7) and thereby solve the problem. The operator eqn.(10)
is uniquely solvable if (7) is uniquely solvable: One can understand (10) as the chain ω → H(ω) →
γ+

τ (H(ω)) = ~H. The �rst mapping has the unique solution H(ω) ∈ H(curl , Ω) due to Lax-Milgram
theorem and the second mapping due to the Theorem 1.

We approximate H(curl ,Ω) by a suitable �nite element space V h using Whitney elements. Let the
�nite dimensional space V −

h approximate the trace space H−1/2
‖,00 (divΓ− , Γ−). The straightforward idea is

to take basis functions ei from this space and compute:

Hei + α∇∧∇ ∧Hei = 0 in Ω, for α ∈ R+

∇∧Hei ∧ n = 0 on Γ+

∇∧Hei ∧ n = ei on Γ−
i = 1 . . . dim(V −

h ) (11)

and to look for ω in the form ω ≈
∑

ei∈V −
h

αiei, which yields H1(ω) ≈
∑

ei∈V −
h

αiHei . As H has to ful�ll

H ∧ n = ~H on Γ+, we have the condition :
∑

ei∈V −
h

αi Hei ∧ n ≈ ~H −H2 ∧ n on Γ+. (12)

This is a discrete form of (10). We solved (12) in two ways. The area of Γ+ is usually much smaller than
that of Γ−. This is a consequence of the fact that we measure on a small part of the boundary. Thus,
dim(V +

h ) < dim(V −
h ) in case of a regular mesh, where V +

h approximates H−1/2
‖,00 (divΓ+ , Γ+). It results

in an under-determined system (12). It can be easily cured by re�ning the mesh on Γ+. So, we can
suppose if necessary that dim(V +

h ) ≥ dim(V −
h ). One can pick some of the �answers� and gain a square

matrix. We tried this for a thin box. More about this approach can be found in the section of numerical
examples.

As dim(V +
h ) > dim(V −

h ), the general approach yields the minimization of

F (ω) :=
∥∥∥H(ω) ∧ n− ~H

∥∥∥
2

H
−1/2
‖,00 (divΓ+ ,Γ+)

+ regularization term. (13)

Hereafter we have to require from the solution H(ω) and from the data ~H an additional regularity
to be able to replace the norm ‖ . ‖

H
−1/2
‖,00 (divΓ+ ,Γ+)

by ‖ . ‖L2(Γ+). For example H(ω) ∈ H1(Ω) and
~H ∈ L2(Γ+). After the substitution we get :

F (ω) ≈
∥∥∥∥∥∥


 ∑

i∈V −
h

αi Hei
+ H2


 ∧ n− ~H

∥∥∥∥∥∥

2

L2(Γ+)

+ regularization term. (14)

For the regularization term we can not use the classical choice of Tikhonov η ‖H(ω)‖2L2(Ω), because Hei

are generally full vectors. This would result in a full regularization matrix of
(
Hei , Hej

)
i,j

type. Let's
take a regularization :

η
∑

ei∈V −
h

‖αiHei‖2L2(Ω) (15)

The minimum is reached in the solution of the following normal equations:
∑

ei∈V −
h

αi Hei ∧ n ·Hej ∧ n + ηαj

∥∥Hej

∥∥
L2(Ω)

= ( ~H −H2 ∧ n) ·Hej ∧ n, j = 0 . . . dim(V −
h ) (16)

which are gained by di�erentiating (14) with respect to αj , j = 0 . . . dim(V −
h ).

4. 2nd APPROACH - ADJOINT METHOD
Let us consider the variational problem
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Problem 2. Find ω on Γ− which minimizes the following functional :

F (ω) :=
∥∥∥H(ω) ∧ n− ~H

∥∥∥
2

H
−1/2
‖,00 (divΓ+ ,Γ+)

+ η ‖H(ω)‖2H(curl ,Ω) , (17)

where the second term is a regularization item with a constant η > 0 and H(ω) is the solution to the
following problem :

H(ω) + α∇∧∇ ∧H(ω) = f in Ω, α ∈ R+

∇∧H(ω) ∧ n = ~C on Γ+

∇∧H(ω) ∧ n = ω on Γ−,

(18)

where ~H and ~C are given boundary data and f is divergence free.

We suppose, that our problem is uniquely solvable (or at least solvable). As argued before, ~H as well
as ~C have to belong to H−1/2

‖,00 (divΓ+ , Γ+). It is obvious that

H(ω) = H1(ω) + H2. (19)

The goal is to generate a minimizing sequence of solutions H(ω) by the steepest descent method:

ωk+1 = ωk − αkF ′(ωk) (20)

starting with an initial guess ω0 with a controlled step αk. The derivative F ′(ω) is understood in the
weak sense, namely it is the �rst variation of F (ω), de�ned by

F (ω + δω)− F (ω) = 〈F ′(ω), δω〉+O(‖δω‖2
H
−1/2
‖ (div0

−,−)
). (21)

The implementation of the steepest descent method requires an explicit form of F ′(ω), which will be
derived in the next subsection.

4.1 Derivation of F ′(ω)
It can be shown that the minimum of the quotient norm

‖m‖2
H
−1/2
‖,00 (divΓ+ ,Γ+)

:= inf
u∈H(curl ,Ω)

u∧n|Γ+=m

‖u‖2H(curl ,Ω)

is reached in the solution to the following problem:

v0 +∇∧∇ ∧ v0 = 0 in Ω
∇∧ v0 ∧ n = 0 on Γ−

v0 ∧ n = m on Γ+.
(22)

We have ∇ ∧ v0 ∈ H(curl ,Ω), moreover ∇ ∧ v0 ∈ H0,Γ−(curl , Ω). Particularly, Theorem 1 says
that ∇∧ v0 has the trace γ+,0

τ (∇∧ v0) ∈ H−1/2
‖ (div0

Γ+
, Γ+).

If we denote by v0(m) the solution of (22), we can rewrite the functional (17) as:

F (ω) :=
∥∥∥v0(H(ω) ∧ n− ~H)

∥∥∥
2

H(curl ,Ω)
+ η ‖H(ω)‖2H(curl ,Ω) . (23)

We recall that v0(m) is linear in m and H1(ω) is linear in ω!
We proved in a forthcoming paper, that (v0(H(ω) ∧ n− ~H) =: v0(ω, ~H))

F (ω + δω)− F (ω) = γ,Γ−

〈
δω, 2η π−τ (H1(ω)) + 2π−τ (v0(ω, ~H))

〉
π,00,Γ−

+O(‖δω‖2
H
−1/2
‖ (div0

−,−)
),

where γ,Γ− 〈 . , . 〉π,00,Γ− denotes the duality between H−1/2
‖ (div0

Γ− , Γ−) and H−1/2
⊥,00 (curlΓ− ,Γ−) [4]. Note,

that Theorem 1 says that ∇ ∧H1 ∈ H0,Γ+(curl , Ω) has the trace γ−,0
τ (∇ ∧H1) ∈ H−1/2

‖ (div0
Γ− , Γ−).

Thus δω = γ−,0
τ (∇∧H1(δω)) ∈ H−1/2

‖ (div0
Γ− , Γ−).
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By comparison with de�nition (21) we get :

F ′(ω) = 2η π−τ (H1(ω)) + 2π−τ (v0(ω, ~H)). (24)

We �nd v0 in a weak sense, as v0 = vΓ1 − vΓ2 + v, where vΓ1 ∈ H(curl , Ω) is any vector �eld
having the trace H(δω)∧n on Γ+ (such vΓ1 exists, since γτ is surjective, namely H(δω) has this trace).
Further, vΓ2 ∈ H(curl , Ω) is any vector �eld having the trace ~H on Γ+. Since v0 is a solution to (22),
we can write :

(∇∧ v0,∇∧ φ) + (v0, φ) = 0 ∀φ ∈ H0,Γ+(curl , Ω).

Thus, if v is the solution to the following problem:

Problem 3. Find v ∈ H0,Γ+(curl , Ω) such that

(∇∧ v,∇∧ φ) + (v, φ) = (−∇ ∧H(δω) +∇∧ vΓ2 ,∇∧ φ) + (−H(δω) + vΓ2 ,φ)
∀φ ∈ H0,Γ+(curl , Ω), (25)

then v0 = H(δω)− vΓ2 + v is a solution to (22).
The theoretical bases with the proofs will be published in a forthcoming paper. The optimal choice of

η will also be studied. One can prove that (20) with control of a step size de�nes a relaxation sequence
converging to absolute minimum point of F (ω). The idea of the proof is based on the fact that F (ω) is
strictly convex and coercive in suitable function spaces [11].

5. NUMERICAL EXAMPLES
In this section we present some computations to demonstrate the MOA and the AM, which have been
described above. Let Ω = (0, h) × (0, 1) × (0, 1), h ∈ (0, 1]. In our investigations we will show the
dependence of the MOA on the thickness h of the domain. In the experiments we put α = 1. For the
space discretization we use the edge �nite element method [2]. The BICGSTAB solver is used to solve
all resulting linear systems.

x

y

z

meshrough

+G

-G

In our examples we take

H = (sin(z), sin(x), sin(y)) (26)

as exact solution.
First, we consider the MOA. The simple geometry of a box allows us to arrive
directly at a square linear system which has to be solved. We will work on
two uniform meshes. A rough mesh is used to describe the system (12). The
answers Hei

are computed on a �ne mesh. The impulses are functions:

e1,i =
{

(0, 1, 0) on i-th 4 of Γ−
0 otherwise,

e2,i =
{

(0, 0, 1) on i-th 4 of Γ−
0 otherwise,

(27)

whose supports are faces of tetrahedra of the rough mesh on Γ−. Let's recall that

V −
h = {e1,i, e2,i}.

Thus, the number of impulses is twice the number of triangles on Γ−. We will collect the answers only
on the opposite face of the box in order to generate a square linear system of algebraic equations. A
successive multiplication of (12) by test functions f j yields

∑

i∈V −
h

αi (Hei ∧ n) · f j ≈ ( ~H −H2 ∧ n) · f j on Γ+, (28)

where f j are the same functions as (27) but they are living on triangles of opposite face of the box. Due
to the fact that our mesh is regular, we obtain exactly the same number of answers as impulses. Thus
we gained a square matrix

M = (Hei ∧ n · f j) i, j = 1 . . . dim(V −
h ). (29)

The resulting matrix is full in the sense that almost all the values are nonzero. There arises a natural
question: �How sensitive is the proposed method to the thickness h of the domain�? One can expect that
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the numerical error associated with a direct problem will increase with increasing h. A similar scheme
but for a corrosion detection has been studied in [7�9]. The authors showed also theoretically that a thick
domain causes an instability of proposed numerical approach.

We observed this instability in the next numerical example. The width of domain h went from 0.005
to 0.4. We computed on a regular triangulation 1 × 2 × 2 twice uniformly re�ned. The resulting mesh
had 2583 DOFs. The results are depicted in Figure 2. The e in all �gures and tables corresponds to
the relative L2-error between the numerical solution and the exact one. The numerical solution is very

e
0.3

0.6

0.4

0.5

0.2

0.1

h - 0.005 steps

806040200

relative error          

Figure 2: MOA: Sensitivity to the thickness of a domain.

sensitive to the thickness of domain as it was expected. As h decreases, the accuracy increases. The
drop of the accuracy when the domain is very thin is due to the irregularity of the mesh, which overrides
positive e�ects of the narrowing.

Further, the sensitivity to noise is studied. Here h = 0.1. All other parameters are the same as in
the former computation. The tested range of noise-level is from 0 to 2 %. The results are presented in
Figure 3. The sensitivity to perturbation of data demonstrates almost linear trend. The 2 % noise-level
in data causes approximately 2% raise in the relative error.

0.06

0.08

e

0.075

0.065

0.07

0.1%

20161284

error curve             

approximation           

Figure 3: MOA: Sensitivity to perturbation.

Next, we studied the convergence of the method. Here h = 0.1 and no noise is present. The results
are collected in Table 1. The n is the rank of matrix M and it represents the number of DOFs. The
symbol D in the table stands for a divergence, i.e., the relative error of a solution was not reasonable
in such cases. The results support the idea of computation on rough and �ne meshes. In the case of a
computation of answers Hei and a linear system (28) on the same mesh, a very ill-conditioned matrix
M is generated (for example n = 16 and DOFs = 57 from Table 1).

Next, we mention an application of (16). We considered also this scheme. It can be used to acquire
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n\ DOFs 57 387 2583 18495 139407
16 D 0.111271 0.060407 0.032195 0.018508

Table 1: MOA relative error e, h = 0.1, n - rank of matrix M.

solution on a thick domain, too. In spite of the fact that it looks promising, some a posteriori techniques
for updating η have to be applied. This will be subject of our future investigation.

Finally, we present some numerical results for the AM. All evaluations are done on the unit cube.
First, the sensitivity to noise-level of data is tested. The initial guess ω0 = 0 is taken. The results
for the regularization parameter η equal to 0.0, 0.01, 0.1 and 1 are depicted in Figure 4. These are

2 6

0.062

4

e

0.064

0.063

0.061

0.06

0.059

0.057

0.058

0.1%

108

0.0                     

0.01                    

0.1                     

1                       

Figure 4: AM sensitivity to noise level for di�erent η.

slightly surprising. The η = 0.01 appears to be the best choice, but η = 0.0 behaves very well, too.
In fact, the di�erence between them seems to be negligible. The results for η = 0.1 and η = 1 lag
behind. This can be misleading and one can think that the regularization is not needed. But, from
the theoretical point of view, the regularization term η ‖H(ω)‖2H(curl ,Ω) was crucial to prove the strict
convexity of the cost functional in suitable function spaces. Moreover, the regularity of exact solution
H = (sin(z), sin(x), sin(y)) also plays a part. Worse results should be expected for real data.

In Table 2 the reader can �nd a numerical justi�cation, that the proposed method acts feasible. The

DOFs 19 117 721 4905 35929
e 0.333953 0.181730 0.106885 0.056909 0.029173

iter 52 52 45 17 16
time/sec 1 3 15 101 1115

Table 2: AM, η = 0.01.

CPU-times of computations are just for information. These can depend strongly on the implementation
of the method. More important are the numbers of iterations, more precisely, the number of direct
problems needed to approach the solution. The algorithm terminates if the di�erence of the last values
of the functional is less than 10−6.

In all tests above, Γ− was just one face of the box. It does not correspond to reality. As mentioned
before, usually dim(V +

h ) < dim(V −
h ) in case of a regular mesh. As we work on regular meshes, we could

not test MOA for these more realistic situations. But the AM is quite independent on the mesh structure.
Let Γ− consists of 5 faces and we have measurements only on one face of the unit cube. The AM behaves
good also in this situation. We applied it on a regular mesh with 4905 DOFs without any noise. The
reached accuracy is almost identical with that in Table 2, e = 0.058293, but the method needed two times
more steps to approach solutions - 34 steps.
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6. CONCLUSIONS
We presented two possible methods to solve a boundary identi�cation problem for the eddy-current model
in the case µr >> 1 outside of domain. The �rst one, the MOA, was designed for a thin box, but can
be extended to any domain by constructing the system of normal equations and adding a regularization
term to it. However, to construct this system we have to impose more regularity on the data and the
solution. The main idea was to compute on two meshes, a rough and a �ne one. It possesses quite strong
numerical stability to noise, but is not easy to apply.

The second method, the AM or the descent steepest method is much easier to apply. There is no need
to impose any non-natural regularity neither on the data nor on the solution. All computations were
done on the same mesh. In spite of that fact it possesses a stronger numerical stability to noise than the
MOA. The method is an ideal candidate for an application of a quasi-Newton method to accelerate the
convergence.
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